-
算法第二章上机实践报告
7-1 最大子列和问题 给定K个整数组成的序列{ N1, N2, ..., NK },“连续子列”被定义为{ Ni, Ni+1, ..., Nj },其中 1。“最大子列和”则被定义为所有连续子列元素的和中最大者。 例如给定序列{ -2, 11, -4, 13, -
算法第二章上机实践报告
实践题目:寻找第k小的数 寻找第k小的数 设计一个平均时间为O(n)的算法,在n(1<=n<=1000)个无序的整数中找出第k小的数。 提示:函数int partition(int a[],int left,int right)的功能是根据a[left]~a[right]中的某个元素x(如a[lef -
第二章上机实验报告
7-1 最大子列和问题 (20分) 给定K个整数组成的序列{ N1, N2, ..., NK },“连续子列”被定义为{ Ni, Ni+1, ..., Nj },其中 1。“最大子列和”则被定义为所有连续子列元素的和中最大者。 例如给定序列{ -2, 11, -4 -
算法第二章上机实践报告
题目:最大子列和问题 问题描述: 给定K个整数组成的序列{ N1, N2, ..., NK },“连续子列”被定义为{ Ni, Ni+1, ..., Nj },其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11 -
算法第二章上机实践报告
题目:派 我的生日要到了!根据习俗,我需要将一些派分给大家。我有N个不同口味、不同大小的派。有F个朋友会来参加我的派对,每个人会拿到一块派(必须一个派的一块,不能由几个派的小块拼成;可以是一整个派)。 我的朋友们都特别小气,如果有人拿到更大的一块,就会开始抱怨。因此所有人拿到的派是同样大小的(但不需 -
第二章作业
1.对分治法思想的体会 分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。 求解某些问题时,由于这些问题要处理的数据相当多,或求解过程相当复杂,使得直接求解法在时间上相当长,或者根本无法直接求出。分治法就是先 -
第二章作业
分治法思想的体会与结对编程的情况汇报 -
算法第二章上机实践报告
1.实践问题:求最大子段和问题 2.问题描述: 给定K个整数组成的序列{ N1, N2, ..., NK },“连续子列”被定义为{ Ni, Ni+1, ..., Nj },其中 1。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 1 -
算法第二章上机报告
题目: 设计一个平均时间为O(n)的算法,在n(1<=n<=1000)个无序的整数中找出第k小的数。 提示:函数int partition(int a[],int left,int right)的功能是根据a[left]~a[right]中的某个元素x(如a[left])对a[left]~a[rig -
算法第二章上机实验报告
实践题目 2-1 找第k小的数 问题描述 设计一个平均时间为O(n)的算法,在n(1<=n<=1000)个无序的整数中找出第k小的数。 提示:函数int partition(int a[],int left,int right)的功能是根据a[left]~a[right]中的某个元素x(如a[lef